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ELASTIC WAVE PROPAGATION IN HETEROGENEOUS PLATES

P. ConsTANCE YANG*, CHARLES H. Norrist and YEHUDA STAVSKYL

Massachusetts Institute of Technology, Cambridge, Mass.

Abstract—A two-dimensional linear theory of motions of heterogeneous plates is deduced from the three-
dimensional theory of elasticity. Transverse shear deformations and rotatory inertia are included in the present
general theory. The heterogeneity of the material is considered to be only in the thickness direction of the plate.
The general plate theory is specialized to cases of symmetrically laminated aeolotropic, orthotropic and iso-
tropic plates. A plate theory of the Kirchhoff type is also deduced. Frequency equations for the propagation of
harmonic waves in an infinite two-layer isotropic plate in plane strain are obtained by the elasticity and the
present plate theories. Several numerical examples are solved and their results are presented in graphs.

NOTATION
Ay, By, Dy constants defined by equation {15} or (16)
oA, Bii Dy operators defined by equations (18)-(35)
a, thickness of top and bottom layer of two-layer plate
¢ phase velocity (= p/f)
E; elastic coefficients{i,j = 1,2,3,4,5,6)
E Young modulus
F,,F,,F, body forces. .
! wave number (= 2n/A)
h thickness of plate
K coefficient of modified shear modulus
LI H functional operators
N.M,Q plate-stresses defined by equations (7)-{(9)
P, traverse normal stress at z = h
pi. P forces defined by equation (45),i = x, y, z
Ry, R\ R, constants defined by equation (46)
t time
u, v, W displacement components in x, y, z directions
u®, v°, w° displacement components at z = 0
X, V2 Cartesian coordinates
o B defined by equation (Al4-15)
1.0,k plate parameters defined by equation (A18-21)
K curvature component defined by equation (13)
£ strain component defined by equation (10)
£° strain component at z = 0 defined by equation (12}
T stress components
U,y slope functions defined by equations (4), (5)
F wave parameter
A wave length
Au Lamé constants
v Poisson ratio
I density
() partial differentiation with respect to i(i = x, y, t)
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1. INTRODUCTION

IN RECENT YEARS some interest arose towards the development of elasticity theories for
plates that are non-homogeneous in the thickness direction. The elastostatic bending and
stretching theory for such plates, based on the Euler-Bernoulli hypothesis, was established
in {1} and 2]

In the present study the equations of motion are established for heterogeneous
anisotropic plates incorporating the effect of shear deformations in a way suggested by
Hencky [3], Uflyand [4] and Mindlin [5] for homogeneous plates. Associated with the
system of plate equations there are stated suitable boundary and initial conditions to
ensure a unique solution.

It will be shown that the plate heterogeneity introduces a coupling phenomenon
between bending and stretching of the type found by Reissner and Stavsky [1, 2] for the
static case.

The general theory is applied to the propagation of plane strain waves of the Rayleigh—
Lamb type [6, 7] in specific two-layer isotropic plates.

2. FORMULATION OF PLATE THEORY

Let us consider a thin elastic heterogeneous plate of thickness h, referred to an x, y, z
system of Cartesian coordinates. The lower and upper surfaces of the plate are z = 0, h
and its cylindrical boundaries fi(x, y) = O are defined by plane curves parallel to the
x-y plane. The faces of the plate are assumed to be free of shear stresses but subjected to
transverse normal stress, as follows

rxz|z=0,h = 0’ ‘cyzlz=0,h = 0 (1)

Tz|z=0 = 0, Tz|z=h = pz‘ (2)

The non-homogeneity of the plate is only in the thickness direction z and it may be
of two types: (i) the elastic moduli vary continuously in the z direction of the so called
“heterogeneous plate”, (ii) thin homogeneous layers of different elastic properties are
composed to form a “laminated plate” in which the moduli are step functions of z.

Assume the following general Hooke’s law for the stress—strain relations, wherein each
stress component is a linear function of all six strain components
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The twenty-one elastic coefficients E;; are specified functions of z but do not vary in
the x, y directions.

In order to account for transverse shear deformation and rotary inertia effects in the
heterogeneous plate theory to be established, we follow Hencky [3] and assume the
displacement components to be of the form

u(xa Vs 2, t) = uO(x’ Ys t) + Zl/]x(x, Vs t) (4)
ux, y,2, 1) = 0°0x, y, 1)+ 2,(x, , 1) ®)
wlx, y,2,t) = w(x, 3, 1). 6)

Note that these relations involve combined action of bending and extension which
characterizes the behavior of heterogeneous plates as shown by Reissner and Stavsky
[1,2]

Defining stress resultants, stress couples, reference surface strains, bending curvatures
and transverse shear strains the following relations are obtained in view of equations (4)-

(6),

h
(N Ny Noy) = [ (57, 75) 42 )

h
(00 =| (t 7, dz ®

h

(M My, Myy) = (107, 7,y)2 d2 ©)
(6x &y £xy) = (€3, €3, €2) + 2(K,, Ky Ky) (10)
e, =0; €y = 832 = WO'}+‘//y; €xz = 82, = w0‘3c+'//x (11)
e =u; =00 & =ul+00 (12)
Kx = l//x’x; Ky = lpy‘y; ny = l/’x'y'*"#y‘x' (13)

In order to obtain plate stress-strain relations expressions (10)~<(13) are introduced
into (3) and the results are integrated according to the definitions (7)~(9) to give

[N.]  [4n A A Ais Ao By By Big| [e2]

N, A1z Az Ay Ays Ay EBI2 B,, By &

9, Ay Az Ay Ays Ass |Bia By By &y

0. _ Ais Ays Ays Ass Ase iB15 B;s Bss €%z (14)
Nl | A1 A Ass Aso Ao |Bio Bis Bus| |5,

M, Byy By By Bys By }Du Dy; Dy Kx

M, B, B,, B,, Bys By i Dy, D;, Dy Ky

| M., J Bie Bzs Bss Bss Bes |Dis Dis Des | | K]

where the constants 4, B and D are defined by the following integrals for a continuously
heterogeneous plate
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h
(4 By Dy) =| Ef1,2,25dz (ij = 1,2.4,5,6). (15)
0

For a n-layer laminated plate these relations become

(A By D) = Y. j:’" Exl,z,z%dz (i) = 1,2,4,5,6) (16)
m=1%Am-1
where E; are the moduli of the homogeneous layer m of thickness h, —h,_ ;.
Substituting equations (11)+(13) into equation (14) the stress resultants and couples
are then expressed in terms of the displacement components u°, v, w® of the reference
plane, and the components ,, {, of change of slope of the normal to the undeformed
reference plane as follows

[N, ] o, Ay Ay Ays+ By A+ By 0]

N, Ay Ay Ayy Ays+ By A+ B, °

0, Ay Aoy Aoy AsstBay AsatBa, w®

0 _ A5y Asy Asy AsstBsi Ags+Bs, Vs a7

N,y Aoy Aoy Aoz AestBey Asst Bz |V, |

M, B, B, B, Bs+9, B+,

M, B,, By, By Bys+Dy, Brt Dy,

M,, By Bsy Bss BsetZey Bas+%s2

where - ) i

(115 %11) = (411, B1)( ) +(Ase Bio)( )y (18)
(12, B12) = (A16, B16)( ) +(A12, Bi2)( )y (19)
(13, B13) = (Ays, Bys)( )+ (414, Bia)( )y (20)
(21, B21) = (A12, Bio)( )+ (426 Bao)( )y @1)
(4 22, B22) = (A26, Be)( )+ (422, B1o)( )y (22)
(A 33, B23) = (A5, Bys)( ) +(A24, B2a)( )y (23)
(A a1, Ba1) = (A1, B1a)( )x+(A4s Bao)( ), 24)
(L 42, Baz) = (A, Bag)( Vx4 (Aza, B2a)( )y (25)
o 43 = Ags( )+ Asa( )y (26)
(51, B51) = (Ar5, Bis)( )+ (Ase, Bso)( )y @7
(52, Bs2) = (Ase, Bse)( )x+(A25, B2s)( )y (28)
ol 53 = Ass( Yot Aus( )y (29)
(A 61, Bo1) = (A1 Bio) ) +(Age Boe)( )y (30)
(A 62, Bo2) = (Age> Bee)( )x+(A26, B2g)( )y (31

(A 63, Bo3) = (Ase Bse) )x+(Aae Bach )y (32)
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(211:213) = (D11, D16)( )+ (D16, D12)( )y (33)
(921’ 922) = (D12, Dzs)( )‘x‘*‘(Dzs’ Dzz)( )'y (34)
(P61, P62) = (D16, D) )<+ (Des> D) )y (35)

The two-dimensional theory of extensional and flexural motions of heterogeneous
anisotropic plates is deduced from the dynamical equations of three-dimensional elasticity

Tyt TayyF Tags T Fy = pliy (36)
Tayx T Tyt Ty T F, = poy, (37
Teznt Tpzy+ T+ F, = pwy, (38)

where p = p(x, ), z) is the material density and F; is the body force i-axis component.
These equations are converted to plate-stress equations of motion by the method of
Boussinesq [8], first they are integrated over the plate thickness and then equations (36)
and (37) are multiplied by z and integrated -over the thickness. Making use of equations
(1) through (9) the following equations of motion are obtained

Nx‘x+ny'y+px = RO“0 'tt+R1l//x‘n (39)
ny’x+Ny'y+py = ROUO 'tt+Rll/jy'n (40)
Qx'x+Qy'y+pz = ROW0 ‘tt (41)
Mx'x+Mxy'y'—Qx = Rluo ’"+R2l//x~"—Px (42)
Mxy'x+My'y——Qy = Rlvo 'tt+R2!//y'n_Py (43)
where the constants R; are of the form
h
(Ro. Ry, R;) =| pll,z,2%) dz (44)
for continuously heterogeneous plates with p = p(z), and
h h
@x’p)”pz9_I_)z)=J.O(Fx’Fy’FZ)dZ; (Px’P}’) ZJO(Fx’FY)ZdZ' (45)
In case of layered plates expressions (44) read
n hm
(Ro, R, R) = ¥ [7 pm(1,2,2%) dz (46)
m=1" bm-1

where p™ is the density of layer m.
The five equations of motion (39) to (43) are further expressed in terms of u°, v°, w°, y,
and ¥, using equations (17) with the result

Ly u®+Lip0° +Lysw®+ Ly +Lysy,+p, = 0 47)
L21“0+L220?+L23WO+L24l/’x+L25'//y+Py =0 (48)
L31“0+L3200+L33W°+L34¢x+L35‘//y+Pz =0 49)
Ly + Lypv® + Lysw®+ Lag o+ Lysty,+ P, = 0 (50)
Lgyu®+Ls;0°+ Lsaw®+ Lsg,+Lssyy,+ P, = 0. (51)

The functional operators L;; are of the form
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Ly = A11( )ux+6A416( )xy+ Aool )y = Rol e (52)

Liz =Ly = Ays( Jxx+(A12+ Aee)( )ay+ A2e( )y (53)

Liy =L = Ais( Jxxt(A1a+As6)( Yey+ Asas( )y (54)

Lyg Loy = £ A;5( et Ase )y+ B )xxt2B16l Vxy+Boo( )yy— Rl ) (55)

Lys,Lsy = £ A14( )xt Asel )y+Biol )axt(Br2+ Bes)( )xy+ Basl )y (56)

Ly; = Age( )xxt2A426( )uy+A22( )y —Ro( ) (57)

Lys = L3y = Ase( )ex+(A25+ As6)( )yt A24( )y (38)

Lya Lay = 2 Ase( )xtAzs( )y+Brol )uxt(Br2+Bee)( )y + Baol )y (59)

L;s, Ls; = ,iA“( yxt Az4( )yt Beel )xxt2Bo6( )xy+Baa( )yy— Ryl e (60)

Lyz = Ass( )t 24as( Yuy+ Assl )3y =Rol )i (61)

Lyg Las = T Ass( )t Aas( )y+Bsi( )xx+(Bia+ Bse)( )y +Basl )y (62)

Lys,Lsy = £ Ass( )xtAaal )y+Bse( )ux+(Bas+ Bye)( Juy+ Baal )y (63)

Lis = —Ass+Dy1( )ex+2D16( )iy = Des( )yy =Rl e (64)
Lys, Lsa = —AssT(Bya—Bse)( )x£(Bag—B2s)( )+ Dysl )xx

+(D12+ D) )xy+ Dasl )yy (65)

Lss = —Ayqs+Dgg( )xx+2D26( )iyt D22( }yy —Ry( )y (66)

The tenth-order system (47) through (51) is the main contribution of the present theory.
It shows that extensional and flexural motions are generally coupled in a heterogeneous
plate and «°, v°, w® and ¥, ¥, are to be determined simultancously.

Appropriate initial and boundary conditions which are sufficient to assure a unique
solution of the plate equations (47)-(51), are as follows
(i) Initial values of ul, u®, w°, ¥,, ¥, and their time derivatives, throughout the plate.
(ii) Any combination of the following boundary conditions along an edge fy(x,y) = 0

u, = i, or N,=N, 67)
W=u? or N, = N, (68)
wl = w° or 0,.=0, (69)
Y=y, or M, =M, (70)
V=1, or M,=M, (71)

where the barred quantities are prescribed.
(iii) On the plate boundaries z = 0, h there are specified the transverse deflection w®
or the transverse load p,.

3. KIRCHHOFF’S TYPE PLATE THEORY

It is of interest, in many instances, to resort to Kirchhoff’s hypothesis when analyzing
heterogeneous plates. The components ¥,, ¥, of change of slope of the normal to the
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undeformed reference plane are now related to the transverse deflection w® in the following
manner

. 0
U= —wl; Y, = —w’, (72)

Consequently, the five equilibrium equations (39) to (43), in view of equations (10)
—(14), can be reduced to three simultaneous equations for #°, v° w® in the form

Lu® +LY,0°+ LYW +p, =0 (73)
LY w°+L3,0°+L3;w°+p, =0 (74)
L3,u®+ L,v° + LYW +p, = 0. (75)

The functional operators L) are given by the following expressions
L(1)2 = Lgl =Ly, ng =L, (76)

LYy = —L3; = —By1( )uus—3B16( Vuxy—(B12+2Be6)( )uyy—Bae( Jyyy+Ri( Ve (77)
LYy = —L33 = —Bye( )uxx—(B12+2B6)( Yxxy=3B26( Vxyy— B22( Jyyy+t Ri( )yee  (78)
L33 = = D11 Frxxx—4D16( Vxxry=(2D12+4D66)( Vxxyy—4D26( Vxyyy— D22 )y,

= Ro( )+ Ro Yxare+ Ro( Yyper (79)

The eighth-order system of equations (73)}(75) is qualitatively different from the
tenth-order system (47)+(51) formulating a heterogeneous plate theory which abandons
Kirchhoff’s hypothesis. The reduction in the order of the differential equations is also
reflected in the form and number of initial and boundary conditions which are now as
follows:

(i) Throughout the plate: initial values of 3, 42, w® and their time derivatives.

(ii) Along an edge of the plate: any combination of the following boundary conditions

u=a° or N,=N, (80)
up =) or No = Ny, (81)
wl=w" or Q,+M,.,=R,=R, (82)
Y=y, or M,=M, (83)

(iii) On the plate faces z = 0, h: either p, or w® are prescribed.

Note that the present eighth-order theory neglects the effect of transverse shear
deformation but includes the effects of “coupled” and rotary inertia. If the plate behavior
is independent of time the static equations pertain, they are of the general form (73)-(75)
where the L%s do not contain any R terms and «°, v w® are functions of x and y only.
These three simultaneous elastostatic equations for the displacement components may be
considered as an alternate formulation of the plate theory given by Reissner and Stavsky
[1,2], in terms of w® and an Airy stress function F.

4. SYMMETRICALLY HETEROGENEOUS ANISOTROPIC PLATES

An interesting special class of laminated plates derived from the general theory,
formulated in equations (47)(51), is the following:
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Let the plate described in Section 2 be the upper half of a heterogeneous plate with
total thickness k. For such a plate it is natural to locate the reference plane z = 0 at its
midsurface, then the elastic moduli follow the symmetry law

Eij(xa Vs _Z) = Eij(xs Vs +Z) (84)

B j‘ hi2 j h/2 d

which symmetrize and simplify the functional operators L;; but does not alter the general
form of the system (47){51). This means that the coupling between extensional and
flexural vibrations still exists but it stems now from the anisotropy of the plate material
and not from its heterogeneity.

In case the symmetrical heterogeneous plate is monoclinic, some of the elastic moduli
in (3) vanish

Eiy=Es=Ey = Ey;s = E3y = Eys = Ejg = E56 =0 (86)

and consequently certain functional operators in (47){51) disappear and others are
simplified as follows

Liz=Lis=Lis=Ly3=1Ly=Lys =0, Lji = L;; (87)

The general plate equations are reduced to an extensional system
L+ L,0°+p, =0 (88)
Lyu®+L,y0%+p, =0 (89)

and a flexural system that are uncoupled,

L3sw°+ Lo+ Lysyy,+p, =0 (90)
Lygw®+ Lagyo+ Lasp, = 0 91
Lysw®+ Lysy.+Lssy, =0 92)

where the L’s are given by equations (52)+66) after taking notice of equations (86) and
(87). The elastodynamics equations for symmetrically orthotropic or isotropic plates,
including shear and inertia terms, will be of the same form as for the monoclinic plate,
equations (88)-(92), hence extensional and flexural vibrations will be uncoupled. Some
simplifications will arise in the expressions for the L operators when appropriate stress—
strain relations for orthotropic or isotropic plates are introduced in equations (52}+66).

It is interesting to note that the equations of motion (88)(89) and (90)+92) for
heterogeneous orthotropic and isotropic plates have the same form of Mindlin’s [9, 5]
equations for the corresponding homogeneous plates, the difference is only in the
constants of the functional operators L.

The initial and boundary conditions associated with the extensional system (88), (89)
are:

(i) Initial values of ul, u® and their time derivative throughout the plate.

(ii) Any combination of the following boundary conditions on an edge fi(x, y) = 0

W=a or N,=N, (93)

n
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=u#° or N,=N, 94)

For the conditions adjoined to the flexural system (90}{92) one writes
(i) Initial values of w° ¥, and their time derivatives throughout the plate.
(i) On an edge f,(x,y) =0

W =@ or Q,=0, (95)
Vo=, or M,=M, (96)
Y=, or M,=M, ©97)

5. x—t STRAIN DEPENDANCE IN HETEROGENEOUS ANISOTROPIC
PLATES

Let ¢, vanish and let both the shear strain components &,,, ¢, and the body force
p, be independent of the y-coordinate. The displacement components (4)6) take now
the form

u(x, z, t) = u°(x, )+ 2 (%, ) (98)
ux, z, 1) = vO(x, 1)+ 2y (x, t) (99)
wix, z, t) = wo(x, t) (100)

which upon introduction into the equilibrium equations (47)51) gives the same tenth-
order system that contains now x and ¢ as the independent variables.
The functional operators L;; are therefore modified as follows

Liy = A )ax=Ro( )us L1z = Lay = Ay6( )ax (101), (102)
Liy= L3 = Ays5( )xx (103)
Ly Ly = 2 A55( )+ Byi( ) =Ry ) (104)
Lis,Ls; = £ A14( )+ Bye( )sx (105)
Ly, = Agel )ex—Rol )us Ly3 = L3, = Asel )ax (106), (107)
Ly Lay = +Ase( )xt Byol )xxs Lys,Ls; = +A4e( )+ Bes( Yax— Ryl )a
(108), (109)
L33 = Ass( )xx—Ro( )us  Las Lyzs = £ Ass( e+ Bsi( )re  (110), (111)
Lys,Lsy = £ Ags( )x+Bse( )xxs  Lua = —Ass+ D1y )ex—Ra( ) (112), (113)
Lys,Lsqg = —Asst(Bia—Bse)( )x+Disl )ax (114)
Lss = —A4s+Dee( Jxx—Ro( ) (115)

The tenth-order x—t dependent system (47){51) shows that even for the one-dimen-
sional deformation case extensional and flexural motions are coupled for non-homo-
geneous plates composed of the most general anisotropic material. The appropriate
initial and boundary conditions are
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(i) Initial values of u° v° w® ¥, ¥, and their time derivative throughout the plate.
(i) Boundary conditions on the edges x = 0, 1

u*=u® or N,=N, (116)

=9 or N,=N, (117)

w=w or Q,=0, (118)

Ye=V¢, or M. =M, (119)

v,=y, or M, =M, (120)
(iii) On the plate boundaries = = 0, h:w° or p, are specified.

Similarly, a Kirchhoff type theory can be formulated when equations (98)(110) are
modified in view of equation (72) to read

u(x, z, t) = u%(x, t)— zw°(x, t)., (121)
u(x,z,t) = v°(x, t) (122)
w(x, z,t) = wo(x, t) (123)

which upon introduction into equations (73)«75) results with the same eighth-order
system with x and ¢ as independent variables. The L%’s are consequently reduced to the
following form

LY = Ay Jue—Ro( )i LY =LY = Ayg( ) (124), (125)
LY = =LY = =By xRl Vraa (126)

LY = Aes( Vux—Ro( Jus LYy = —L$ = —Byo( Jux  (127), (128)
LY = =D yil Ve = Rol Vet Rl Vare- (129)

It is noted that the displacement components remain coupled even for the one-
dimensional case due to the anisotropy of the considered plate. The form of the boundary
conditions along x = 0,1 will be of the form given in equations (80){83) and the remaining
conditions will be of the type explained for the Kirchhoff’s type two-dimensional theory.

6. x-t STRAIN DEPENDENCE IN HETEROGENEOUS ORTHOTROPIC
PLATES

An interesting reduction occurs in the one-dimensional equations, given in Section 5,
when the plate material is orthotropic. Equations (47)+51) are separated to a sixth-order
system for u°, w® and ¥, and a fourth-order system for v° and y, with the result

L +Ligp+p. =0 (130)
Lyaw°+Lsgy+p. =0 (131)
Lygu®+Lyyw®+ Loy +P, =0 (132)

and
Ly, 0°+Lysyy,+p, =0 (133)
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Lo;0°+Lssp,+P, =0 (134)

where -
Ly = A1 )xx—Rol )ues Lis= L4y = Bi( )ux—Ri( )n (136)
Lyy = Ass( )xx—Ro( )us  LasLaz = £A4ss( ) (137), (138)
Laja = —Ass+Dy1( )x—Ry( ) (139)

and

Ly, = Agel Vx> Ljs,Ls; = Bge( )xx—Ry( ) (140), (141)
Lss = —Asa+Dge )xx—Ry( )y (142)

The boundary conditions associated with the system (130)}+132) are given by equations
(116), (118), (119) while the conditions {117) and (120) must be satisfied by the simultan-
eous equations (133), (134).

A one-dimensional Kirchhoff-type theory for orthotropic heterogeneous plates is
obtained from the eighth-order system (73)+75) when appropriate simplifications are
introduced into the L%s. There results a sixth-order system for 4® and w® and a separate
second-order equation for v°,

LY u®+LYw°+p, =0 (143)
LY u®+LYsw°+p, =0 (144)
and
LY,00+p, = 0 (145)
where
L(1)3 = _Lgl = _Bll( )’xxx+R1( )‘xtt (146)
L(3)3 = —Dll( )'xxxx+R0( )‘u+R2( )’xxn (147)

L?, is given by equation (102) and L3, by (106).
Three boundary conditions, along x = 0,1, are associated with the sixth-order system
(143), (144), one of which is the same as (116), and

w®=w® or R, =R,
wl,=w’, or M,=M,. (148)
Correspondingly, the simple boundary condition to be satisfied by v° on x = 0,1 is
*=¢ or N,=N, (149)

Equations (143), (144) are remarkable for the coupling of u® and w°® which disappears
only when B, and R, vanish. Then equations (143), (144) reduce to the classical equations
of longitudinal and flexural vibrations, respectively, of homogeneous rods (see, e.g.,
Kolsky’s [10] monograph).

7. x-t STRAIN DEPENDENCE IN ISOTROPIC TWO-LAYER PLATES

To gain some insight into the heterogeneous plate theory established in Section 2 the
uni-axial frequency equation of an infinite two-layer isotropic plate is derived.
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The system (130)-(132) with F, = 0, is first transformed to a single sixth-order equation
in terms of w® in the form
H,w°+H,p, = 0 (150)
where
H; = (41:D11 =B} )( )xxxxxx+(2B1 1Ry — AR, — D4R,
+[B1Ro—A411D111Ro/As5)( ) xxxsr
+(RoR;—R}+[A1Ry+ DRy —2B ;1R Ro/As55)( ) sxtrn
+([R}—RoR;IRo/A55)( Vuusr+ A11Ro( Vsxee — R Ve (151)
Hy = ([411D15 =B 1 VAss)H )axx +([2B1 1R — A1 1Ry = D11 RoVAs5)( Vo
+(RoR, = RIVAss) )t = A11( Yxx+ Rol )gr- (152)

If the x—y plane is located at the interface of the top layer “1” (of thickness “a’’) and
the bottom layer “2” (of thickness “‘b”), having elastic moduli A;, 4, v(i = 1,2) one
finds that

A = 2ua/(1 —v)+2u,b/(1 —v,), Ass = pia+ b (153a,b)

Byy = ma®/(1=v;)— psb?/(1—v,) (154)

D,y = 2u,0%/3(1—v,)+ 2u,b%/3(1 = v,) (155)

Ry, =ap;+bp,, Ry =a%*p,/2—b%*p,/2, Ry =a’p,/3+b%p,/3. (156a, b, c)

The corresponding Kirchhoff’s- type theory in terms of a single sixth-order equation
in w° takes the following form after making use of equations (143) and (144).

Hyw°+H,p, =0 (157
where
Hy = (A1 D11 = BI)( Vxxxxxx T (2B11Ry — A1 1Ry = Dyt Ro)( )xun
+(RoR; = RY( Vextrrr = A1 1Ro( Vixxar + R Vaae (158)
Hy = Ro( Jy=Ay1( )ax- (159)

The frequency equation is derived from the equation of motion (150) or (157) by drop-
ping the p, term and by introducing for the transverse deflection

w® = exp i(pt+ fx) (160)

where p is the circular frequency, f is the wave number related to the wavelength A
through

fA =2n. (161)

The frequency equation obtained from equation (150) is

¢ +(K3—Ke/f?)/Ks. c*+(K, —Ks/f?)/Ky . 2+ K /Ky =0 (162)
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while the corresponding equation based on Kirchhoff’s theory (157) is

(K3 —Ke/f)c* +(Ky—Ks/f )+ K, = 0 (163)

where
K, =A,,D,,—B?,, K, = K5+(B?Ro— A, D;)Ry/Ass (164a,b)
K, = K5+(A,;;R,+D,;Ry—2B,;R)Ry/Ass, K, = (RI—RyR,)Ro/Ass (164c,d)

Ks = A,,R,, K¢ = —R3, K, = 2B, ,R;—A;R,— DR,
4 = RoR,—R? (164¢-h)
and

¢ = p/f. (165)

For a given plate the frequency equation (162) or (163) can be used to determine ¢ for
a specified value of f or the wavelength A. In other words, frequency curves (p vs. f) can
be determined without difficulty by the suggested plate theories. Before going into a
numerical example, the three-dimensional elasticity solution is derived for the plane
wave propagation problem in an infinite two-layer isotropic plate.

8. ELASTICITY SOLUTION FOR WAVE PROPAGATION IN TWO-LAYER
PLATES

The frequency equation for the wave propagation in an infinite two-layer isotropic
plate in plane strain was derived by the authors and independently by Jones [11].
One finds the following non-dimensional transcendental frequency equation

a, +a, sha,b shf,b+a; chayb chf,b+sha,a shfalas + a, sha,b shfb
+ as cha,b chf,b)+ cha,a chf,alas + a, sha,b shf,b+ag cha,b chf,b)
+sha;a chp a(a,osho,b chf,b+a, cha,b shf,b)+ cha,a shf,ala, , sha,b
chf,b+a, 5 cha,b shf,b) =0 (166)

where the appropriate constants are given in the Appendix.

For a given plate all parameters and constants are easily computed. Then the fre-
quency equation (166) is used to determine the wave number F for an assumed non-
dimensional velocity Q by a laborious trial and error procedure.

Equation (166) has many solutions for a given © which means that the frequency
curves have many branches. Each branch corresponds to a particular wave in the plate
with a definite amplitude distribution across its thickness.

Note that for a homogeneous plate one has oy, = a,, B, = B,, a=b, u; = u, and
equation (166) reduces to two frequency equations of symmetric and antisymmetric
motions as given by Lamb [7].

Another interesting reduction of equation (166) occurs when waves of very small
length are considered, one finds the velocity of the Rayleigh surface waves for each layer.

Setting f = 0 in equation (166) the following cut-off frequency equations are obtained
for simple thickness-vibrations, which are limiting forms of waves in a plate as the wave
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length approaches infinity,

B, =0 (167)
(oy /o) B3 sin ayb cos o a+ (i, /u,)B? sin aa cos ayb = 0 (168)
B, sin B,b cos fia+(u,/u,)f sin fiacos b =0 (169)
where
o = p?pf(Ai+2um),  Bi=ppds  i=12 (170a, b)

Equation (169) simply gives zero circular frequency p. Equations (168), (169) are the
frequency equations for the simple thickness-stretch and simple thickness-shear modes,
respectively, of a laminated plate.

By definition, in a free thickness-stretch mode of the plate u = 0, w = w(z,t) and in a
thickness-shear mode u = u(z,t), w = 0. Consequently, these modes could be directly
obtained from the equations of motion.

Since the solution of the three-dimensional elasticity equations is obtained for plane
waves in two-layer plates, it becomes possible to examine the proposed plate theory.
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Fi1G. 1. Frequency curves of an infinite two-ply laminated plate according to various theories.
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In the simple thickness-shear motion, equation (169) is the next frequency equation
for the layered plate. The corresponding result based on the plate theory (143)(145) is

P2 = KAss/(Rz—Rf/Ro) 171)

where the value of K is so determined as to make the lowest root of p calculated from
equation (169) equal to the approximate solution (171). The value of K will depend on
the material properties of the layered plate whereas in homogeneous plate it has a con-
stant value, (see Ref. [9], p. 37).
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F1G. 2. Frequency curves of an infinite two-ply laminated plate according to plate theories.

9. NUMERICAL EXAMPLES

Frequency curves for two-layer isotropic plates of infinite length are obtained by the
various theories developed in the previous sections as follows:
(i) The heterogeneous plate theory including transverse shear deformations with
modified modulus K4, instead of A5 for which the frequency equation is
given by equation (150) and K is determined by equation (169) and (171).
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(ii) The heterogeneous plate theory including transverse shear deformations for
which the frequency equation is given by equation (150).

(i) The heterogeneous plate theory neglecting transverse shear deformations for
which the frequency equation is given by equation (157).

(iv) The exact solution from the elasticity theory for which the frequency equation is
given by equation (166).
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F1G. 3. Frequency curves of an infinite two-ply laminated plate according to plate theories.

In Fig. 1, two branches of the frequency curves of each of the above mentioned theories
are presented for a two-layer plate with material properties u, = 3u,, p, = p,v; = v,
and a = b. Those curves with subscripts 1 and 2 are, respectively, the lowest branch of all
frequency curves and the branch of the first cut-off frequency. The first cut-off frequency
is the lowest frequency of the simple thickness-shear mode. In the vibration of homogen-
eous plates the lowest branch of all frequency curves corresponds to the first anti-symme-
tric vibration or flexural vibration whereas the branch of the first cut-off frequency corres-
ponds to another branch of the anti-symmetric vibration of higher frequency. The second
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lowest branch which corresponds to the longitudinal vibration in the case of homogen-
eous plates is not shown. It is noted that the heterogeneous plate theory including trans-
verse shear deformations gives only three branches of the frequency curve in view of
equation (150) while the exact solution has many branches. The three branches are the
lowest, the second lowest and the first cut-off frequency branch. According to equation
(157) the heterogeneous plate theory, neglecting shear deformations, gives only two bran-
ches and none of them is the branch of the first cut-off frequency. Thus, only one branch
of the curve given by the plate theory neglecting shear deformations is shown in Fig. 1.

For two more two-layer isotropic plates, the frequency curves of the heterogeneous
plate theories are shown in Figs. 2 and 3. In order to have a basis for comparison, the
frequency curves of the plate theories for a homogeneous plate are presented in Fig. 4.
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FiG. 4. Frequency curves of a homogeneous plate according to plate theories.

10. DISCUSSIONS AND CONCLUSIONS

Some interesting results of the above numerical examples are discussed and concluded
as follows:
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(1) The frequency curves presented in Fig. 1 for an infinite two-layer isotropic plate
show good agreement between the predictions of the exact solution of elasticity and that
of the heterogeneous plate theory including rotatory inertia and transverse shear deforma-
tions with a modified modulus KA.

(2) The shear effect is important for heterogeneous plates in vibration. According to
Figs. 1, 2, and 3, the frequency curve of the plate theory including shear (curve 1,) always
deviated from that of the plate theory neglecting shear (curve I11,). Therefore, the effect of
transverse shear deformations is significant in the dynamic theory of heterogeneous plates.

(3) The first cut-off frequency branch of the frequency curve is important in the vibra-
tion of heterogeneous plates. In Fig. 3, the cut-off frequency 0-87 is much lower and closer
to the lowest branch for the specific two-layer plate than in the case of the homogeneous
plate (Fig. 4) which has a value of /2. Since the branch of the first cut-off frequency may
be in the lower frequency region, the vibration of a heterogeneous plate may possibly
be in the branch of the first cut-off frequency rather than in the lowest branch even when
the vibration is of a rather low frequency. Furthermore, in view of the present results,
the plate theory including shear is adequate to describe the motion of a heterogeneous
plate since this theory does provide the branch of the first cut-off frequency.
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APPENDIX

The appropriate constants of the non-dimensional transcendental frequency equation

(166) are:
a, =8Z,Z,(VX-2WY)

a, = 4Z,[8Z, \ WX —(Z%/Z,,)V Y]

ay = 4Z,(4VY-2Z2WX)

g = MZ,\JZ 1) Z2X2 + 1622 W2 H(Z3/Z 1 Z2 ) Z3Y2 +422, V7]
as = —Z2(Z%/Z, )X +16Z, W2 —4[(Z%/Z,,)Y> +4Z,,V?]
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ag = 42,82, ,VW—(Z}/Z,,)X Y]

a7 = —16Z,)(ZIW?+ X?)~(Z3/Z,,)(Z3V? +4Y?) (Al-13)
ag = 4Z,(ZIW? + X*)+ HZ}V? +4Y?)

a, = 8Z32XY—Z3VW)
ajo = —MVX+2WYNZ}Z 43+ Z43Z%
= (VX +2WYNZ3Z3+1622,)/Z,,

ay, = (VX +2WY)(Z2Z3+1622,)/Z,,
ayy = —MVX+2WY)Z34Z3+Z3/Z3,).

S

—

=
|

Introducing the wave parameters

of = f2-pPof(i+2m),  BI =S —-pPpui  i=12

(A14-17)
Q* = ?p,/uy, F = fa=2na/A
and the plate parameters
Y=pPuUP2 0= m/u;,  e=ba
v v (A18-21)
ki = w4+ 2u) i=1,2
Then the constants V, W, X, Y, Z take the form
V= 26— 1)+6yQ?
W=24-1
X =62~-0H)-2
Y = 2(1-8)+Q25(1—y)
Zl = 2_92
Z, = 2—y6Q?
(A22-33)
Zy = 1k Q)1 -}
Za2 = [(1-kyy0Q%)(1 —yoQ")}
Zy, = [(1-k, Q)0 ")’592)]*
Z,y = [(1 =kypoQ@3)(1 - Q)P
Z3, = [(1-Q*)(1~yoQ*)
Z4s = [(1 =k, Q) (1 —k,70Q7) ]}
and the amplitudes of the hyperbolic functions are
aya = F\/(1-k,Q?)
azb = Fe /(1 —k,y0Q?)
(A34-37)

Bia = F\/(I—Qz)
B:b = Fe /(1 -y6Q?)

(Received 16 September 1965)
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Résumé-—Une théorie de mouvements linéaires. a deux dimensions, de plaques hétérogénes, est déduite de la
théorie a trois dimensions d’élasticité. Des déformations transversales de cisaillement et d’inertie rotatoire sont
inclues dans cette théorie générale. L’hétérogénéité du matériel est considérée se trouver seulement dans la
direction de I’épaisseur de la plaque. La théorie générale de plaques se spécialise dans les cas de plaques aélo-
tropes, orthotropes et isotropes symmétriquement laminées. Une théorie de plaques du type Kirchhoff est
aussi déduite. Des équations de fréquence pour la propagation des ondes harmoniques dans une plaque infinie
isotrope 4 deux couches en contrainte plane sont obtenues par I’élasticité et la présente théorie de plaques.
Plusieurs exemples numériques sont résolus et leurs résultats sont présentés en graphiques.

Zusammenfassung—Fine zweidimensionale lineare Theorie von Bewegungen heterogener Platten ist von
der dreidimensionalen Elastizitdtstheorie abgeleitet. Transversale Schubbeanspruchungsverformungen und
Drehungstrigheit sind in der gegenwirtigen allgemeinen Theorie eingeschlossen. Die Heterogenitat des
Materials ist nur in der Dickenrichtung der Platte erwogen. Die allgemeine Plattentheorie ist fiir Falle von
symmetrisch geschichteten aeolotropischen, orthotropischen und isotropischen Platten spezialisiert. Eine
Plattentheorie der Kirchhoff Type ist ebenfalls abgeleitet. Frequenzgleichungen fiir die Fortpflanzung von har-
minischen Wellen in einer unendlichen zweischichtigen isotropischen Platte fiir ebenc Spannunszustinde werden
von der elastischen und der gegenwiirtigen Plattentheorie erhalten. Einige zahlenmassige Beispiele und deren
Ergebnisse sind in graphischer Darstellung wiedergegeben.

AGcTpakT— [IByMEpHAsA JTHHEHHAs TEOPHs ABHXEHHH reTEPOrcHHbIX IUIACTHH BBIBOAMTCA W3 TPEXMEPHOH
Teopud ynpyrocty. Jdedopmanuu nonepevHoro CABMra H BpallaTeabHass MHEPLUS BKIIIOYCHbB! B HACTOALIYIO
06myro Teopuio. CUMTAETCA, YTO r€TEPOTeHHOCTh MaTEPHala CyLIECTBYET TOJBKO B HAMPABICHHHU TOILLIHHBI
mracTuHbl. OO0Ias TeopHA IUIACTHHBI YOPOIIAETCA CIy4asM CHUMMETPHYHO CIOHCTBIX, OJOTPOMNHBIX,
OPTOTPOIHBIX M HM30TPOIHBEIX IUIACTHH. BhiBooMTCA Taxke Teopus niacTuHet Kupxrodda. VpasHenus
4acTOTHI AJIA PacHpPOCTPAHEHHA TapMOHMYECKMX BONH B Oe3rpaHMYHON ABYCIOWHONH HM3OTPOMHYECKOH
NMAcTHHE B INUIOCKOH HOeopMallMH TOJyYeHBI TEOPHMAMH YOPYTOCTH M HACTOAUICH Teopueil NUIacTHHEL
Pa3peieHo HECKOIBKO HHU(POBBIX NPHMEPOB H HX PE3YNbTATH MPEACTABICHBI B AHAarPaMMax.



